Mathematical Analysis on Pulsatile Flow through a Catheterized Stenosed Artery

نویسندگان

  • Shafi Ullah Siddiqui
  • Chhama Awasthi
چکیده

In this paper, the pulsatile flow of blood through an inclined catheterized stenosed artery is analyzed. Perturbation method is used to solve the implicit system of partial differential equations with suitable boundary conditions. Various analytical expressions axial velocity, flow rate, wall shear stress and effective viscosity have been derived with the help of MATLAB for understanding the fluid flow phenomena. The combined effect of catheterization, body acceleration, slip and inclination has been seen by plotting the graph and observed that axial velocity and flow rate increases with the increase in body acceleration, inclination angle and slip velocity while axial velocity diminishes on increasing the catheter radius. Wall shear stress increases with the increase in catheter radius and body acceleration but presence of slip velocity reduces the wall shear stress. Effective viscosity diminishes on increasing body acceleration and inclination angle, whereas slightly augmented in non-inclined stenosed artery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

Oscillatory MHD Flow of Blood through an Artery with Mild Stenosis (RESEARCH NOTE)

The purpose of this work is to study the effect of oscillatory MHD blood flow in stenosed artery. The analytical and numerical results are obtained for oscillatory MHD blood flow, which is assumed to be a Newtonian fluid. It was also assumed that the surface roughness is of cosine shaped and the maximum height of roughness is negligible, compared with the radius of un-constricted tube. The flui...

متن کامل

Pulsatile MHD Flow in an Inclined Catheterized Stenosed Artery with Slip on the Wall

Catheter is commonly used by the surgeons for various reasons in the treatment of a patient suffering with cardiovascular diseases. Catheterization increases the mean flow resistance in the arterial blood flow and many other complications are associated with the presence of catheter in the artery. Effects of catheter in stenosed artery can be estimated non-invasively by means of hemodynamic ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017